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Abstract

The problem of identifying the 3D pose of a known object from a given 2D
image has important applications in Computer Vision ranging from robotic
vision to image analysis. Our proposed method of registering a 3D model of
a known object on a given 2D photo of the object has numerous advantages
over existing methods: It does neither require prior training nor learning, nor
knowledge of the camera parameters, nor explicit point correspondences or
matching features between image and model. Unlike techniques that estimate
a partial 3D pose (as in an overhead view of traffic or machine parts on a
conveyor belt), our method estimates the complete 3D pose of the object,
and works on a single static image from a given view, and under varying and
unknown lighting conditions. For this purpose we derive a novel illumination-
invariant distance measure between 2D photo and projected 3D model, which
is then minimised to find the best pose parameters. Results for vehicle pose
detection are presented.

Contents
1 Introduction 2
2 Related Work 3
3 Matching 3D Models with 2D Photos 5
4 Derivation of Invariant Loss Function 7
5 Practical Behaviour of the Loss Function 10
6 Optimising Vehicle Pose using the Loss Function 11
7 Technical Aspects 14
8 Discussion 16

Keywords

illumination-invariant loss; 2D-3D pose estimation; pixel-based; featureless;
optimisation.

This work was supported by Control C=xpert.

1

http://arxiv.org/abs/1011.1035v1


1 Introduction

Pose estimation is a fundamental component of many computer vision applications,
ranging from robotic vision to intelligent image analysis. In general, pose estimation
refers to the process of obtaining the location and orientation of an object. However,
the accuracy and nature of the pose estimate required varies from application to
application. Certain applications require the estimation of the full 3D pose of an
object, while other applications require only a subset of the pose parameters.

Motivation. The 2D-3D registration problem in particular is concerned with es-
timating the pose parameters that describe a 3D object model within a given 2D
scene. An image/photograph of a known object can be analysed in greater detail if
a 3D model of the object can be registered over it, to be used as a ground truth.
As an example, consider the case of automatically analysing a damaged car using a
photograph. The focus of this work is to develop a method to estimate the pose of
a known 3D object model in a given 2D image, with an emphasis on estimating the
pose of cars. We have the following objectives in mind.

• Use only a single, static image limited to a single view

• Work with any unknown camera (without prior camera calibration)

• Avoid user interaction

• Avoid prior training / learning

• Work under varying and unknown lighting conditions

• Estimate the full 3D pose of the object (not a partial pose as in an overhead
view of traffic or machine parts along a conveyor belt)

A 3D pose estimation method with these properties would also be useful in
remote sensing, automated scene recognition and computer graphics, as it allows for
additional information to be extracted without the need for human involvement.

Many methods, including point correspondence based methods, implicit shape
model based methods and image gradient based methods, have been developed to
solve the pose estimation problem. However, the methods identified in the literature
do not satisfy the objectives mentioned above, hence the necessity of our novel
method. A more detailed review of existing pose estimation methods ranging over
the past 30 years is presented in Section 2.

Main contribution. This paper presents a method which registers a known 3D
model onto a given 2D photo containing the modelled object while satisfying the
objectives outlined above. It does this by measuring the closeness of the projected
3D model to the 2D photo on a pixel (rather than feature) basis. Background and
unknown lighting conditions of the photo are major complications, which prevent
using a naive image difference like the absolute or square loss as a measure of fit.
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A major contribution of this paper is the novel “distance” measure in Section 3
that does neither depend on the lighting of the real scene in the photo nor on choosing
an appropriate lighting in the rendering of the 3D model, hence does not require
knowledge of the lighting. Technically, we derive in Section 4 a loss function for
vector-valued pixel attributes (of different modality) that is invariant under linear
transformations of the attributes.

To analyse the nature of the developed loss function, we have applied it to a
series of test cases of varying complexity, as detailed in Section 5. These test cases
indicate that for our target application the loss function is well behaved and can be
optimised using a standard optimisation method to find an accurate pose match.
As presented in Section 6, we achieve good pose recovery results in both artificial
and real world test cases using this optimisation scheme. In these optimisation
tests, negative influence of the background is attenuated by clipping the photo to
the projection of the 3D model when calculating the loss. Technical aspects of the
optimisation and loss calculation methods are discussed in Section 7.

2 Related Work

Model based object recognition has received considerable attention in computer vi-
sion circles. A survey by Chin and Dyer [CD86] shows that model based object
recognition algorithms generally fall into 3 categories, based on the type of object
representation used - namely 2D representations, 2.5D representations or 3D repre-
sentations.

2D representations store the information of a particular 2D view of an object (a
characteristic view) as a model and use this information to identify the object from
a 2D image. Global feature methods have been used by Gleason and Algin [GA79]
to identify objects like spanners and nuts on a conveyor belt. Such methods use
features such as the area, perimeter, number of holes visible and other global features
to model the object. Structural features like boundary segments have been used by
Perkins [Per78] to detect machine parts using 2D models. A relational graph method
has been used by Yachida and Tsuji [YT77] to match objects to a 2D model using
graph matching techniques. These 2D representation-based algorithms require prior
training of the system using a ‘show by example’ method.

2.5D approaches are also viewer centred, where the object is known to occur in a
particular view. They differ from the 2D approach as the model stores additional
information such as intrinsic image parameters and surface-orientation maps. The
work done by Poje and Delp [Poj82] explain the use of intrinsic scene parameters in
the form of range (depth) maps and needle (local surface orientation) maps. Shape
from shading [Hor75] and photometric stereo [Woo78] are some other examples of
the use of the 2.5D approach used for the recognition of industrial parts. A range of
techniques for such 2D/2.5D representations are described by Forsythe and Ponce
[FP02], by posing the object recognition problem as a correspondence problem.
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These methods obtain a hypothesis based on the correspondences of a few matching
points in the image and the model. The hypothesis is validated against the remaining
known points.

3D approaches are utilised in situations where the object of interest can appear
in a scene from multiple viewing angles. Common 3D representation approaches
can be either an ‘exact representation’ or a ‘multi-view feature representation’. The
latter method uses a composite model consisting of 2D/2.5D models for a limited
set of views. Multi-view feature representation is used along with the concept of
generalised cylinders by Brooks and Binford [Bro81] to detect different types of
industrial motors in the so called ACRONYM system. The models used in the
exact representation method, on the contrary, contain an exact representation of
the complete 3D object. Hence a 2D projection of the object can be created for any
desired view. Unfortunately, this method is often considered too costly in terms of
processing time.

Limitations. The 2D and 2.5D representations are insufficient for general purpose
applications. For example, a vehicle may be photographed from an arbitrary view
in order to indicate the damaged parts. Similarly, the 3D multi-view feature rep-
resentation is also not suitable, as we are not able to limit the pose of the vehicle
to a small finite set of views. Therefore, pose identification has to be done using
an exact 3D model. Little work has been done to date on identifying the pose of
an exact 3D model from a single 2D image. Huttenlocher and Ullman [HU90] use
a 3D model that contains the locations of edges. The edges/contours identified in
the 2D image are matched against the edges in the 3D model to calculate the pose
of the object. The method has been implemented for simple 3D objects. However,
this method will not work well on objects with rounded surfaces without clearly
identifiable edges.

Implicit Shape Models. Recent work by Arie-Nachimson and Ronen Basri
[ANB09] makes use of ‘implicit shape models’ to recognise 3D objects from 2D
images. The model consists of a set of learned features, their 3D locations and the
views in which they are visible. The learning process is further refined using factori-
sation methods. The pose estimation consists of evaluating the transformations of
the features that give the best match. A typical model requires around 65 images
to be trained. There are many different types of cars in use and new car models are
manufactured quite frequently. Therefore, any methodology that requires training
car models would be laborious and time consuming. Hence, a system that does not
require such training is preferred for the problem at hand.

Image gradients. Gray scale image gradients have been used to estimate the 3D
pose in traffic video footage from a stationary camera by Kollnig and Nagel [KN97].
The method compares image gradients instead of simple edge segments, for bet-
ter performance. Image gradients from projected polyhedral models are compared
against image gradients in video images. The pose is formulated using 3 degrees
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of freedom; 2 for position and 1 for angular orientation. Tan and Baker [TB00]
use image gradients and a Hough transform based algorithm for estimating vehicle
pose in traffic scenes, once more describing the pose via 3 degrees of freedom. Pose
estimation using 3 degrees of freedom is adequate for traffic image sequences, where
the camera position remains fixed with respect to the ground plane. This approach
does not provide a full pose estimate required for a general purpose application.

Feature-based methods. Work done by [DDDS04] and later by [MNLF] attempt
to simultaneously solve the pose and point correspondence problems. The success of
these methods are affected by the quality of the features extracted from the object,
which is non-trivial with objects like cars. Our method on the contrary, does not
depend on feature extraction.

Distance metrics can be used to represent a distance between two data sets, and
hence give a measure of their similarity. Therefore, distance metrics can be used to
measure similarity between different 2D images, as well as 2D images and projections
of a 3D model. A basic distance metric would be the Euclidian Distance or the 2-
norm || · ||2. However, this has the disadvantage of being dependant on the scale
of measurement. The Mahalanobis Distance on the other hand, is a scale-invariant
distance measure. It is defined as

||x− y||C−1 ≡
√

(x− y)⊤C−1(x− y)

for random vectors x and y with a covariance matrix of C. The Mahalanobis distance
will reduce to the Euclidean distance when the covariance matrix is the identity
matrix (C = I). The Mahalanobis distance is used by Xing et al. [XNJR03] for
clustering. It is also used by Deriche and Faugeras [DF90] to match line segments
in a sequence of time varying images.

3 Matching 3D Models with 2D Photos

We describe our approach of matching 3D models to 2D photos in this section using
a novel illumination-invariant loss function. A detailed derivation of the loss is
provided in Section 4.

The problem. Assume we want to match a 3D model (M) to a 2D photo (F )
or vice versa. More precisely, we have a 3D model (e.g. as a triangulated textured
surface) and we want to find a projection θ for which the rendered 2D imageMθ has
the same perspective as the 2D photo F . As long as we do not know the lighting
conditions of F , we cannot expect F to be close to Mθ, even for the correct θ.
Indeed, if the light in F came from the right, but the light shines on M from the
left, Mθ may be close to the negative of F .

Setup. Formally, let P=ZZnx
×ZZny

={1,...,nx}×{1,...,ny} be the set of |P | (integer)
pixel coordinates, and p=(x,y)∈P be a pixel coordinate. Alternatively a smaller
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region of interest may be used for P instead of ZZnx
×ZZny

as explained in Section 6.
Let F :P→IRn be a photo with n real pixel attributes, andMθ :P→IRm a projection
of a 3D object to a 2D image with m real pixel attributes. The attributes may be
colours, local texture features, surface normals, or else. In the following we consider
the case of grey-level photos (n= 1), and for reasons that will become clear, use
surface normals and brightness (m=4) of the (projected) 3D model.

Lambertian reflection model. A simple Lambertian reflection model is not re-
alistic enough to result in a zero loss on real photos, even at the correct pose.
Nevertheless (we believe and experimentally confirm that) it results in a minimum
at the correct pose, which is sufficient for matching purposes. We use Phong shading
without specular reflection for this purpose [FvDFH95]. Let Ia/d∈IR be the global
ambient/diffuse light intensities of the 3D scene, and L∈ IR3 be the (global) unit
vector in the direction of the light source (or their weighted sum in case of multiple
sources). For reasons to become clear later, we introduce an extra illumination offset
I0∈IR (which is 0 in the Phong model). For each surface point p, let ka/d(p)∈IR be
the ambient/diffuse reflection constants (intrinsic surface brightness) and φ(p)∈IR3

be the unit (interpolated) surface “normal” vector. Then the apparent intensity I
of the corresponding point p in the projection Mθ(p) is [FvDFH95]

I(p) = ka(p)Ia+kd(p)(L
⊤φ(p))Id+I0 ≡ A·Mθ(p)+b

The last expression is the same as the first, just written in a more covariant form:
Mθ(p) := (ka(p),kd(p)φ(p))

⊤∈ IR4 are the known surface (dependent) parameters,
and A :=(Ia,IdL

⊤)∈IR4×1 are the four (unknown) global illumination constants, and
b= I0. Since I(·) is linear in A and Mθ(·), any rendering is a simple global linear
function ofMθ(p). This model remains exact even for multiple light sources and can
easily be generalised to color models and color photos.

Illumination invariant loss. We measure the closeness of the projected 3D model
Mθ to the 2D photo F by some distance D(F,AMθ+b), e.g. square or absolute or
Mahalanobis. We do not want to assume any extra knowledge like the lighting
conditions A under which the photo has been taken, which rules out a direct use of
D. Ideally we want a “distance” between F and M that is independent of A and
is zero if and only if there exists a lighting condition A such that F and AMθ+b
coincide.

Indeed, this is possible, if (rather than definingMθ as some A-dependent rendered
projection ofM) we use A-independent brightness and normalsMθ as pixel features
as defined above, and define a linearly invariant distance as follows: Let

F̄ :=
1

|P |
∑

p∈P

F (p) ∈ IR and M̄θ :=
1

|P |
∑

p∈P

Mθ(p) ∈ IR4

be the average attribute values of photo and projection, and

CFMθ
:=

1

|P |
∑

p∈P

(F (p)− F̄ )(Mθ(p)− M̄θ)
⊤ ∈ IR1×4
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be the cross-covariance matrix between F andMθ and similarly CMθF =C
⊤
FMθ

∈IR4×1

and the covariance matrices CFF ∈IR1×1 and CMθMθ
∈IR4×4. With this notation we

can define the following distance or loss function between F and Mθ:

Loss(θ) := min{n,m} − tr[CFMθ
C−1

MθMθ
CMθFC

−1

FF ] (1)

Obviously this expression is independent of A. In the next section we show that it
is invariant under regular linear transformation of the pixel/attribute values of F
and Mθ and zero if and only if there is a perfect linear transformation of the pixel
values fromMθ to F . This makes it unnecessary to know the exact surface reflection
constants of the object (ka/d(p)∈IR). We will actually derive

Loss(θ) = min
A,b

DMahalanobis(F,A·Mθ + b)

This implies that Loss(θ) is zero if and only if there is a lighting A under which F
and Mθ coincide, which we desired.

4 Derivation of Invariant Loss Function

A detailed derivation of the loss function is given in this section. Although together
with Section 3, this is a main novel contribution of this paper, it may be skipped
over by the more application-oriented reader without affecting the continuity of the
rest of the paper.

Notation. Using the notation of the previous section, we measure the similarity
of photo F : P → IRn and projected 3D model Mθ : P → IRm (returning to general
n,m∈IN) by some loss:

Loss(θ) := D(F,Mθ) :=
1

|P |
∑

p∈P

d(F (p),Mθ(p)) (2)

where d is a distance measure between corresponding pixels of the two images to
be determined below. A very simple, but as discussed in Section 2 for our purpose
unsuitable, choice in case of m=n would be the square loss d(F (p),Mθ(p))=||F (p)−
Mθ(p)||22.

It is convenient to introduce the following probability notation: Let ω be uni-
formly distributed1 in P , i.e. Pr[ω] = |P |−1. Define the vector random variables
X :=F (ω)∈ IRn and Y :=Mθ(ω)∈ IRm. The expectation of a function of X and Y
then is

E[g(X, Y )] :=
1

|P |
∑

ω∈P

g(X(ω), Y (ω))

With this notation, (2) can be written as

Loss(θ) = D(X, Y ) = E[d(X, Y )]

1With a non-uniform distribution one can easily weigh different pixels differently.

7



Noisy (un)known relation. Let us now assume that there is some (noisy) relation
f between (the pixels of) F and Mθ, i.e. between X and Y :

Y = f(X) + ε, ε = noise

If f is known and ε is Gaussian, then

Df(X, Y ) = E[||f(X)− Y ||2
2
]

is an appropriate distance measure for many purposes. In case F and Mθ are from
the same source (same pixel attributes, lighting conditions, etc) then f=identity is
appropriate and we get the standard square loss. In many practical applications,
f is not the identity and furthermore unknown (e.g. mapping gray models to real
color photos of unknown lighting condition). Let us assume f belongs to some set
of functions F . F could be the set of all functions or just contain the identity or
anything in between these two extremes. Then the “true/best” f may be estimated
by minimising Df and substituting into Df :

fbest = argmin
f∈F

Df(X, Y ), D(X, Y ) := min
f∈F

Df(X, Y )

Given F , D can in principle be computed and measures the similarity between
X and Y for unknown f . Furthermore, D is invariant under any transformation
X→g(X) for which F◦g=F .

Linear relation. In the following we will consider the set of linear relations

Flin := {f : f(X) = AX + b, A ∈ IRm×n, b ∈ IRm}

For instance, a linear model is appropriate for mapping color to gray images (same
lighting), or positives to negatives. For linear f , D becomes

D(X, Y ) = min
A∈IRm×n

min
b∈IRm

E[||AX + b− Y ||2
2
]

Good news is that this distance is invariant under all regular linear reparametrisa-
tions of X , i.e. D(X,Y ) =D(AX+b,Y ) for all b and all non-singular A. Unfortu-
nately, D is not symmetric in X and Y and in particular not invariant under linear
transformations in Y . Assume the components (Y1,...,Ym)

⊤ are of very different na-
ture (Y1=color, Y2=angle, Y3=texture), then the 2-norm ||Y ||2

2
=Y⊤Y =Y 2

1
+...+Y 2

m

compares apples with pears and makes no sense. A standard solution is to normalise
by variance, i.e. use

∑

iY
2

i /σ
2

i , where σ
2

i =E[Y 2

i ]−E[Yi]
2, but this norm is (only)

invariant under component scaling.

Linearly invariant distance. To get invariance under general linear transforma-
tions, we have to “divide” by the covariance matrix

CY Y := E[(Y − Ȳ )(Y − Ȳ )⊤], Ȳ := E[Y ]
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The Mahalanobis norm (cf. Section 2)

||Y ||2
C−1

Y Y

:= Y⊤C−1

Y Y Y

is invariant under linear homogenous transformations, as can be seen from

||AY ||2
C−1

AY,AY

≡ Y⊤A⊤C−1

AY,AYAY = Y⊤C−1

Y Y Y ≡ ||Y ||2
C−1

Y Y

where we have used CAY,AY =ACY YA
⊤.

The following distance is hence invariant under any non-singular linear transfor-
mation of X and any non-singular (incl. non-homogenous) linear transformation of
Y :

D(X, Y ) := min
A∈IRm×n

min
b∈IRm

E[||AX + b− Y ||2
C−1

Y Y

] (3)

Explicit expression. Since the norm2 is quadratic in A and b, the minimisation
can be performed explicitly, yielding

b = bmin := Ȳ −AminX̄ and A = Amin := CY XC
−1

XX , where (4)

CXY := Cov(X, Y ) = E[(X − X̄)(Y − Ȳ )⊤], X̄ := E[X ]

and similarly CY X = C⊤
XY and CXX . Inserting (4) back into (3) and rearranging

terms gives

D(X, Y ) = tr[11− CY XC
−1

XXCXYC
−1

Y Y ] = m− tr[CXYC
−1

Y YCY XC
−1

XX ].

This explicit expression shows that D is also nearly symmetric in X and Y . The
trace is symmetric but m is not. For comparisons, e.g. for minimising D w.r.t. θ,
the constant m does not matter. Since the trace can assume all and only values in
the interval [0,min{n,m}], it is natural to symmetrize D by

min{D(X, Y ), D(Y,X)} = min{n,m} − tr[CXYC
−1

Y YCY XC
−1

XX ]

Returning to original notation, this expression coincides with the loss (1). It is hard
to visualize this loss, even for n= 1 and m= 4, but the special case m= n= 1 is
instructive, for which the expression reduces to

D(X, Y ) = 1− corr2(X, Y ), where corr(X, Y ) =
Cov(X, Y )

σXσY

is the correlation between X and Y . The larger the (positive or negative) correlation,
the more similar the images and the smaller the loss. For instance, a photo has
maximal correlation with its negative.
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(b) Pose deviations

Figure 1: Figure 1(a) shows the pose representation θ used for 3D car models. We
use the rear wheel center µ, the vector between the wheel centres δ and unit vector
ψ in the direction of the rear wheel axle. Figure 1(b) shows the deviations of the
randomly generated starting poses used for reliability testing. The test cases were
generated to fall within percentage deviations in the ranges of 1%, 2%, 4%, 8% and
16% from the true pose θ0 in the image. Poses 1-10 have a deviations of 1%, poses
11-20 have a deviation of 2% etc.

5 Practical Behaviour of the Loss Function

In this section, we explore the nature of the loss function derived in Section 4 for real
and artificial photographs, together with a pose representation specific to vehicles.

Representation of the pose. It is important to select a pose representation that
suitably describes the 3D model that is being matched. Careful selection of pose
parameters can enhance the ability of the optimisation to find the best match, and
can allow object detection or coarse alignment methods, such as that presented in
[HB09] to specify a starting pose for the optimisation. We use the following pose
representation for 3D car models, temporarily neglecting the effects of perspective
projection:

θ := (µx, µy, δx, δy, ψx, ψy) (5)

µ=(µx,µy) is the visible rear wheel center of the car in the 2D projection. δ=(δx,δy)
is the vector between corresponding rear and front wheel centres of the car in the 2D
projection. ψ=(ψx,ψy,ψz) is a unit vector in the direction of the rear wheel axle of
the 3D car model. Therefore, ψz=−

√
1−ψ2

x−ψ2

y and need not be explicitly included
in the pose representation θ. This representation is illustrated in Figure 1(a).

Artificial photographs. To understand the behaviour of the loss function, we
have generated loss landscapes for artificial images of 3D models. To produce these
landscapes, an artificial photograph was generated by projecting the 3D model at
a known pose θ0 with Phong shading. We then vary the pose parameters, two at a
time about θ0 and find the value of the loss function between this altered projection
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and the “photograph” taken at θ0. These loss values are recorded, allowing us to
visualise the behaviour of the loss function by observing surface and contour plots
of these values. The unaltered pose values should project an image identical to
the input photograph, giving a loss of zero according to the loss function derived
in Section 4, with a higher loss exhibited at other poses. The variation of the loss
with respect to a pair of pose parameters is shown in Figure 2(a). It can be seen
from these loss landscapes that the loss has a clear minimum at the initial pose
θ0. The loss values increase as these pose parameters deviate away from θ0, up
to ±20%. From this data, we are able to see that the minimum corresponding to
θ0 can be considered a global minimum for all practical purposes. The shape of
the surface plots was similar for all other parameter pairs, indicating that the full
6D landscape of the loss function should similarly have a global minimum at the
initial pose, allowing us to find this point using standard optimisation techniques,
as demonstrated in Section 6.

Loss landscape. The landscape of the loss function was analysed for real pho-
tographs by varying the pose parameters of the model about a pose obtained by
manually matching the 3D car model to a real photograph. The variation was
plotted by taking a pair of pose parameters at a time over the entire set of pose
parameters. A loss landscape obtained by varying µy and δx for a real photograph
is shown in Figure 2(b). The variation of the loss function for other pose parameter
pairs were found to be similar. Although a global minimum exists at the best pose
of the real photograph, the nature of the loss function surface makes it more difficult
to optimise when compared to artificial photos (Figure 2(a)). In particular, one can
observe local minima in the periphery of the landscape, and the full 6D landscape
is considerably more complex.

6 Optimising Vehicle Pose using the Loss Func-

tion

As explained in Section 4, the correct pose parameters θopt will give the lowest
loss value. The loss function landscape, as discussed in Section 5, shows that θopt
corresponds to the global minimum of the loss function. Therefore, an optimisation
was performed on the loss function to obtain θopt based on the pose representation
θ (Equation 5). The optimisation strategy and its reliability in different scenarios
is discussed in this section.

The Optimiser. To immunise the optimisation from pixel quantisation artefacts
and noise in the images, direct search methods that do not calculate the derivative
of the loss function were considered. The optimisation was performed using the well
known Downhill Simplex Method (DS) [NM65, PTVF07, Mat], owing to its efficiency
and robustness. When optimising an n-dimensional function with the DS method,
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Figure 2: Loss landscapes for artificial and real photos. The six dimensional
loss function was visualised by plotting its variation with a pair of pose parameters at
a time. Based on our pose representation this results in fifteen plots. The variation of
the loss function with a pair of pose parameters are shown for an artificial photograph
and a real photograph. The nature of the loss function for real photographs makes it
more difficult to find the global minimum (hence the correct pose) than for artificial
photographs.

a so called simplex consisting of n+1 points is used to traverse the n-dimensional
search space and find the optimum.

The reliability of the optimisation is adversely affected by the existence of local
minima. Fortunately, the Downhill Simplex method has a useful property. In most
cases, if the simplex is reinitialised at the pose parameters of the local minimum and
the optimisation is performed again, the solution converges to the global minimum.
Proper parameterisation is important for the optimiser to give good results. We
have used a normalised pose parameterisation as follows.

Normalised pose parameters. Normalisation gives each pose parameter a com-
parable range during optimisation. The normalised pose θN was obtained by nor-
malising µ and δ w.r.t. the dimensions of the photograph.

θN =

(

µx

IW
,
µy

IH
,
δx
IW

,
δy
IH
, ψx, ψy

)

IW ,IH are the width and height of the photograph (2D image). ψ is a unit vector
and does not require normalisation.

Initialisation. The downhill simplex method, like all optimisation techniques, re-
quires a reasonable starting position. There are many methods for selecting a start-
ing point, from repeated random initialisation to structured partitioning of the opti-
misation volume. A disadvantage of these methods is that they require a number of
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optimisation runs to locate the optimal point, which can take significant time. De-
pending on the application, it may be possible to develop a coarse location method
which provides an estimate of the optimal pose.

The wheel match method described by Hutter and Brewer [HB09] is one such
method, providing an initial match for a vehicle pose if the vehicle’s wheels are vis-
ible. Wheel match estimations using this method generally locate the wheel centres
with a high degree of accuracy, but perform less effectively when determining the
axle direction. This indicates that it may be possible to perform staged optimisation,
attempting to fix some parameters before others. In general, parameter estimation
using this method is within 5-15% of the true value. This initial pose selection is
sufficient for our purposes.

Reliability of the pose estimate. Tests were carried out to asses the reliability
of the pose estimate. We first generated synthetic “photographs” by rendering a 2D
projection of a 3D car model at a known pose θ0. The optimisation was performed
from initial poses θ that had a known deviation from θ0. Test poses were selected
at 1%, 2%, 4%, 8% and 16% deviation from the known initial parameters so as to
investigate a large hyper-volume in 6D space. The parameter values for 50 such
random starting poses, 10 for each range, are shown in Figure 1(b). The reliability
for each percentage range was defined as the proportion of correct matches in that
deviation range. Exact pose recovery for synthetic images and better than careful
manual tuning for real photos were regarded as correct. With this definition, a
reliability of 1 indicates that all test cases in the range converged. A reliability of 0
indicates that none of the test cases in the range converged.

Reliability for artificial images. To ensure that the selected optimisation method
is appropriate, we first investigate a simple case in which an artificial image with
known parameters is constructed and used to validate the optimisation method. The
reliability of the optimisation (with simplex re-initialisations) was found to be 100%
(Figure 4) for initial poses with up to a 16% deviation from the matching pose.

Reliability for artificial images with real backgrounds. Next we rendered
artificial car models on a real background photo, and performed the same reliability
tests. Allowing simplex re-initialisations preserved a 100% convergence up to the
8% deviation range (Figure 4), although the simplex did not converge for certain
starting poses at a 16% deviation. This shows that the effects of a real background
can deteriorate the reliability of the pose estimate for higher deviations. In order to
address this issue, a further refinement of the algorithm was made by clipping the
background in the photograph when calculating the loss.

Clipping the background. The methodology used to lower the effects of the image
background is as follows: Pixels in the projected image that do not correspond to
points of the 3D model were treated as background. These pixels do not have surface
normal components as they do not belong to the 3D model. Therefore, they can
easily be filtered out by identifying pixels in the projected image that have null
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(a) Starting pose (b) Estimated pose

Figure 3: Pose estimation results. We show a sample pose estimation result for
a real photograph of a 2005 Mazda 3 car. The car in the original photograph is blue.
The estimated pose is shown by projecting the 3D car model over the photograph.
The 3D car model is in red.

values for all three components (x,y,z) of the surface normal. Only the remaining
pixels P ={p∈ZZnx

×ZZny
:φ(p) 6=0} were considered for the loss calculation (Figure

4).

Reliability for real images using parallel projection. The reliability of the
pose estimates on a real car photo are shown in Figure 4. Correct pose estimates
with a high reliability were obtained for starting poses up to an 8% deviation.

Reliability for real images using perspective projection. The distance from
the camera to the projection plane in the OpenGL perspective projection model
was used as a seventh parameter when optimising using perspective projection. The
extra pose parameter makes the optimisation harder at higher deviations as seen in
the reliability graph in Figure 4. The reliability of the pose estimate may be further
improved by using more sophisticated optimisation methods.

An example of a correctly estimated pose for a starting pose within a 16% devia-
tion from the manually matched pose is shown in Figures 3(a) and 3(b). Given that
we lack an absolute ground truth estimate, pose estimates were labelled as correct
or incorrect based on their visual similarity to the input image.

7 Technical Aspects

In this section we describe some of the technical aspects of the proposed work.
The initial code was implemented in MATLAB [Mat], however, components were
gradually ported to C in order to improve performance.

3D rendering. In order to calculate the loss values described in Section 4, it
was required to render the surface normals and brightness of a 3D model at a
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Artificial photo without a background
Artificial photo with a background with clipping
Artificial photo with a background without clipping
Real photo using parallel projection
Real photo using perspective projection

Figure 4: Results of the reliability
tests. The graph shows the results of
the reliability tests based on initial poses
with percentage deviations as shown in
Fig.1(b). Results for an artificial pho-
tograph (a projection of the 3D model),
an artificial photograph with a real back-
ground superimposed and a real photo-
graph are included.

Table 1: Rendering and loss calculation times.

Approach Loss calc. Render
MATLAB 0.16 s 2.28 s
C/OpenGL 0.04 s 0.17 s

given pose. Initially, the rendering was done using model3D [Mic], a BSD licensed
MATLAB [Mat] class. As this rendering was not fast enough for our application,
a separate module was written in C to render the model off-screen using OpenGL
[Ope] pBuffer extension and GLX. This C module was used with the MATLAB
code using the MEX gateway. Initially, only the rendering was done in C. The
rendered 2D intensity and surface normal matrices were returned back to MATLAB
using the MEX gateway. This seemed to exhaust memory during the reliability
tests described in Section 6. Therefore, the rendering and the loss calculation were
also implemented in C, with only the loss value returned to MATLAB for use in
optimisation. This second approach improved performance in terms of speed and
memory usage. A summary of the time taken to render the image and to calculate
the loss using these approaches are presented in Table 1.

3D models. Triangulated 3D car models of significant complexity and detail in the
AutoDesk 3DS file format were used for the work in this paper. These models were
purchased from online 3D model vendors and had in the order of 30,000 nodes and
in the order of 50,000 triangles.

Running times. A typical Downhill Simplex minimisation required in the order of
100–200 loss function evaluations. Using the C based loss calculation and OpenGL
rendering, pose estimation in artificial images took around 1 minute for models with
more than 30,000 nodes. Recent work done in [MNLF] on pose estimation using
point correspondences, takes more than 3 minutes (200 seconds) for an artificial
image of a model with only 80 points. Hence, despite being a pixel based method,
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the performance of our approach is very encouraging.

Possible improvements. The OpenGL context needs to be initialised each time
the loss is calculated, when the C module (MEX) to calculate the loss is invoked
from MATLAB. A further speed-up could be obtained by implementing the entire
code (rendering and optimisation) in C, whereby the time spent on initialising the
OpenGL context could be saved, as this needs to be done only once. It was also
noted that although hardware accelerated OpenGL performs fast rendering, reading
the rendered pixels back to main memory causes a performance bottleneck. The loss
calculation may also be done in the graphics hardware itself, using GLSL or GPU
computing, in order to avoid this bottleneck.

8 Discussion

Summary. A method to register a known 3D model on a given 2D image is pre-
sented in this paper. The correlation between attributes in the 2D image and pro-
jected 3D model are analysed in order to arrive at a correct pose estimate. The
method differs from existing 2D-3D registration methods found in the literature.
The proposed method requires only a single view of the object. It does not require a
motion sequence and works on a static image from a given view. Also, the method
does not require the camera parameters to be known a priori. Explicit point cor-
respondences or matched features (which are hard to obtain when comparing 3D
models and image modalities) need not be known beforehand. The method can re-
cover the full 3D pose of an object. It does not require prior training or learning. As
the method can handle 3D models of high complexity and detail, it could be used for
applications that require detailed analysis of 2D images. It is particularly useful in
situations where a known 3D model is used as a ground truth for analysing a 2D pho-
tograph. The method has been currently tested on real and artificial photographs
of cars with promising results.

Outlook. A planned application of the method is to analyse images of damaged
cars. A known 3D model of the damaged car will be registered on the image to be
analysed, using the proposed registration method. This will be used as a ground
truth. The method could be extended further to simultaneously identify the type
of the car while estimating its pose, by optimising the loss function for a number of
3D models and selecting the model with the lowest loss value. More sophisticated
optimisation methods may be used to improve results further.

Conclusion. We conclude from our results that the linearly invariant loss function
derived in Section 4 can be used to estimate the pose of cars from real photographs.
We also demonstrate that the Downhill Simplex method can be effectively used to
optimise the loss function in order to obtain the correct pose. Allowing simplex
re-initialisations makes the method more robust against local minima. The possi-
bility of needing such re-initialisations can be significantly reduced by clipping the
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background of the image when calculating the loss. Despite being a direct pixel
based method (as opposed to a feature/point based method), the performance of
our method is very encouraging in comparison with other recent approaches, as
discussed in Section 7.
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